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Groups of Permutations of a Set

Given a nonempty set X, we may consider the set SX (Fraktur “S”) of bijections from X to

itself. Certainly, the identity map ι : X → X defined by ι(x) = x for every element x of X is a

bijection, hence SX is nonempty. Given any two bijections σ, τ : X → X, it follows that σ ◦ τ is

a bijection from X to itself so that SX is closed under composition. Composition of functions is

associative. Last, for any bijection σ : X → X, there exists a function σ−1 : X → X such that

σ−1 ◦ σ = ι = σ ◦ σ−1: indeed, for every x in X, there exists a unique y in X such that σ(y) = x, so

we may define σ−1(x) = y. We conclude therefore that (SX , ◦) is a (not necessarily abelian) group.

We refer to SX as the symmetric group on the set X. Considering that a bijection of a set is

by definition a permutation, we may sometimes call SX the group of permutations of the set X.

Given that |X| < ∞, there exists a bijection between X and the set {1, 2, . . . , |X|} that maps

an element from X uniquely to some element of {1, 2, . . . , |X|}. Consequently, in order to study

the group of permutations of a finite set, we may focus our attention on the permutation groups

of the finite sets [n] = {1, 2, . . . , n} for all positive integers n. We refer to the group S[n] as the

symmetric group on n letters, and we adopt the shorthand Sn to denote this group.

Proposition 1. We have that |Sn| = n! = n(n− 1)(n− 2) · · · 2 · 1.

Proof. By definition, the elements of [n] are bijections from [n] to itself. Each bijection σ : [n]→ [n]

is uniquely determined by the values of σ(1), σ(2), . . . , σ(n). Consequently, we may construct a

bijections from [n] to itself by specifying the values σ(i) for each integer 1 ≤ i ≤ n in turn.

Certainly, there are n distinct choices for the value of σ(1). Once this value has been specified, there

are n− 1 distinct choices for the value of σ(2) that differ from σ(1). Once both σ(1) and σ(2) have

been specified, there are n− 2 distinct choices for the value of σ(3) that differ from both σ(1) and

σ(2). Continuing in this manner, there are n− i+ 1 distinct choices for the value of σ(i) that differ

from σ(1), σ(2), . . . , σ(i − 1) for each integer 1 ≤ i ≤ n. By the Fundamental Counting Principle,

there are
∏n

i=1(n− i+ 1) = n(n− 1)(n− 2) · · · 2 · 1 = n! distinct bijections from [n] to itself.

Permutations and the Symmetric Group on n Letters

Considering that every element σ of Sn is uniquely determined by the values σ(1), σ(2), . . . , σ(n),

we may visualize σ as the following 2× n array by listing σ(i) beneath each integer 1 ≤ i ≤ n.

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
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Using the fact that σ(σ(i)) = σ2(i) for each integer 1 ≤ i ≤ n, we may build upon this array to list

the image σ2(i) of σ(i) under σ beneath σ(i) for each integer 1 ≤ i ≤ n. 1 2 · · · n

σ(1) σ(2) · · · σ(n)

σ2(1) σ2(2) · · · σ2(n)


Continue in this manner until each of the integers 1 ≤ i ≤ n appears in the same column twice.

Observe that the columns of this array give rise to cycles (i, σ(i), σ2(i), . . . , σri−1(i)) whose entries

are distinct. We say that two cycles (a1, a2, . . . , ak) and (b1, b2, . . . , b`) are disjoint whenever the

entries ai and bj are distinct for all pairs of integers 1 ≤ i ≤ k and 1 ≤ j ≤ `.

Example 1. Compute the disjoint cycles of the following permutation.

σ =

(
1 2 3 4 5 6 7 8

2 5 8 4 1 7 6 3

)
Solution. Computing the disjoint cycles amounts to building the array until each of the integers

1 ≤ i ≤ n appears in the same column twice. Explicitly, we have the following array.

σ =


1 2 3 4 5 6 7 8

2 5 8 4 1 7 6 3

5 1 3 4 2 6 7 8

1 2 8 4 5 7 6 3


Consequently, the disjoint cycles of σ are (1, 2, 5), (3, 8), (4), and (6, 7). �

Given a cycle (i, σ(i), σ2(i), . . . , σri−1(i)), we refer to the non-negative integer ri as its length. Cycles

of length k are called k-cycles. Cycles of length 2 are known as transpositions. Observe that if σ

in Sn has k disjoint cycles of lengths r1, . . . , rk, then r1+· · ·+rk = n. Even more, every permutation

σ in Sn is uniquely determined by its disjoint cycles. Consequently, we may write σ as a product

of its disjoint cycles σ = (i1, σ(i1), . . . , σ
r1−1(i1))(i2, σ(i2), . . . , σ

r2−1(i2)) · · · (ik, σ(ik), . . . , σ
rk−1(ik))

for some integers 1 ≤ i1, i2, . . . , ik ≤ n; we call this the cycle decomposition of σ. Conversely,

given a permutation σ with cycle decomposition σ1σ2 · · ·σk, we can reconstruct σ as follows.

1.) Build a 2× n array with the integers 1, 2, . . . , n listed in order in the first row.

σ =

(
1 2 · · · n

)

2.) In order to fill the space below the integer 1, first locate the integer 1 in some cycle σj1 .

3.) Given that 1 is immediately followed by a right parenthesis, then σ(1) is the integer that

begins the cycle σj1 ; otherwise, σ(1) is the integer that immediately follows 1 in the cycle σj1 .

4.) Repeat the above two steps until the integers σ(1), σ(2), . . . , σ(n) are all found.

Based on the commentary at the beginning of the page above, we have the following propositions.
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Proposition 2. Given a cycle σ of length r, we have that ord(σ) = r.

Proof. Observe that if σ = (a1, a2, . . . , ar) is a cycle, then σi(aj) = aj+i (mod r). Consequently, we

have that σi(aj) = aj if and only if j + i ≡ j (mod r) if and only if i ≡ 0 (mod r), from which it

follows that ord(σ) = min{i ≥ 1 |σi(aj) = aj for all integers 1 ≤ j ≤ r} = r.

Our next proposition states that the cycle decomposition is unique up to rearrangement.

Proposition 3. Given disjoint cycles σ1 and σ2, we have σ1σ2 = σ2σ1.

Proof. By definition, the cycle σ1 maps some set {m1, . . . ,mi} ⊆ [n] one-to-one and onto itself, and

likewise, the cycle σ2 maps some set {n1, . . . , nj} ⊆ [n] one-to-one and onto itself.

Given that σ1 and σ2 are disjoint, we have that {m1, . . . ,mi} ∩ {n1, . . . , nj} = ∅, hence by

the algorithm outlined above Example 2, the permutation obtained by σ1σ2 is the same as the

permutation obtained by taking σ2σ1. Explicitly, if the integer i is in neither σ1 nor σ2, then we

must have that σ(i) = i; otherwise, the integer i appears in either σ1 or σ2 but not both.

Proposition 4. Given a permutation σ with cycle decomposition σ1σ2 · · ·σk such that ri is the

length of the cycle σi, we have that ord(σ) = lcm(r1, r2, . . . , rk).

Proof. By Proposition 3, disjoint cycles commute, hence we have that

ord(σ) = ord(σ1 · · ·σk) = min{i ≥ 1 | (σ1 · · · σk)i = ι} = min{i ≥ 1 |σi1 · · ·σik = ι}.

We claim that σi1 · · ·σik = ι if and only if σij = ι for each integer 1 ≤ j ≤ k. Certainly, if σij = ι for

each integer 1 ≤ j ≤ k, then σi1 · · ·σik = ι. Conversely, if σij 6= ι for some integer 1 ≤ j ≤ k, then

σi1 · · ·σik 6= ι because the cycles σ1, . . . , σk are all disjoint. Consequently, we conclude that

ord(σ) = min{i ≥ 1 |σij = ι for each integer 1 ≤ j ≤ k}
= min{i ≥ 1 | ord(σj) = rj divides i for each integer 1 ≤ j ≤ k} = lcm(r1, . . . , rk).

We refer to a permutation σ of order 2 as an involution. By Proposition 4, if the cycle decompo-

sition of a permutation σ is the product of disjoint transpositions, then σ is an involution.

Example 2. Give the cycle decomposition of the permutation from Example 1; then, use Propo-

sition 4 to find its order.

Solution. Considering that the disjoint cycles of σ are (1, 2, 5), (3, 8), (4), and (6, 7), it follows

that the unique (up to arrangement) cycle decomposition of σ is σ = (1, 2, 5)(3, 8)(4)(6, 7). By

Proposition 4, we have that ord(σ) = lcm(3, 2, 1, 2) = lcm(6, 1, 2) = lcm(6, 2) = 6. �

Considering that (Sn, ◦) is a group, it follows the product σ = σ1 · · ·σk of (not necessarily disjoint)

cycles σ1, . . . , σk is again a permutation. Given that this is the case, we can reconstruct σ as follows.

1.) Build a 2× n array with the integers 1, 2, . . . , n listed in order in the first row.

σ =

(
1 2 · · · n

)
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2.) In order to fill the space below the integer 1, first locate the integer 1 in the cycle σj1 that is

farthest to the right among the cycles in the product σ1 · · ·σk.

3.) Given that 1 is immediately followed by a right parenthesis, then 1 maps to the integer bj1
that begins σj1 ; otherwise, 1 maps to the integer nj1 that immediately follows 1 in σj1 .

4.) Locate the integer bj1 or nj1 in the cycle that is farthest to the right among the cycles in the

product σ1 · · ·σj1−1; then repeat the third step.

5.) Repeat the third and fourth steps until it is not possible; the last integer found is σ(1).

6.) Repeat the the above four steps until the integers σ(1), σ(2), . . . , σ(n) are found.

One useful way to think about and to understand the mechanics of this algorithm is that function

composition is read from right to left. Considering that each cycle is itself a permutation, in order to

find the image of i under the map σ1 · · · σk, we follow the image of i under the successive composite

maps σk, σk−1σk, etc., all the way up to σ1 · · ·σk. Further, if the integer σj(i) does not appear

in σj−1, then σj−1σj(i) = σj(i), hence we must only consider the cycle farthest to the right that

contains the integer under consideration: all cycles that do not contain σj(i) will fix σj(i).

Example 3. Find the permutation σ = (1, 3, 4)(4, 5)(1, 4)(2, 3) of S5 in two-line notation.

Solution. Using the algorithm above, we find that 1 maps to 4; then, 4 maps to 5; and finally, 5

does not appear in any cycle to the left of (4, 5), so it follows that σ(1) = 5. We find next that 2

maps to 3; then, 3 maps to 4; and there are no permutations to the left of (1, 3, 4), so it follows

that σ(2) = 4. We find next that 3 maps to 2 in the last cycle, and 2 does not appear in any cycle

to the left of (2, 3), so it follows that σ(3) = 2. We find next that 4 maps to 1; then, 1 maps to 3;

and there are no permutations to the left of (1, 3, 4), so it follows that σ(4) = 3. Last, we find that

5 maps to 4; then, 4 maps to 1; and there are no permutations to the left of (1, 3, 4), so it follows

that σ(5) = 1. We conclude therefore that σ can be written in two-line notation as follows.

σ =

(
1 2 3 4 5

5 4 2 3 1

)
�

Often, it is advantageous to omit the cycles of length 1 (or 1-cycles) when describing a permutation

via its cycle decomposition. For instance, the permutation σ = (1, 2, 3) can be viewed as the 3-cycle

σ =

(
1 2 3

2 3 1

)
in S3 or as the permutation τ in Sn for any integer n ≥ 3 that acts as σ on the subset {1, 2, 3} and

acts as the identity on the subset {4, . . . , n}. Consequently, a permutation is uniquely determined by

its cycle decomposition (excluding 1-cycles) regardless of the symmetric group to which it belongs.

Proposition 5. For every integer n ≥ 3, the symmetric group Sn is not abelian.

Proof. Consider the cycles σ = (1, 2) and τ = (1, 3) in S3. By the paragraph above, we may view σ

and τ as elements of Sn for every integer n ≥ 3. Considering that στ = (1, 2)(1, 3) = (1, 3, 2) is not

equal to τσ = (1, 3)(1, 2) = (1, 2, 3), we conclude that Sn is not abelian for any integer n ≥ 3.
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Q1, January 2010. Give an explicit isomorphism between S3 and GL2(F2), i.e., the group of all

invertible 2× 2 matrices with entries in the field of two elements F2
∼= Z/2Z.

Proposition 6. For every integer n ≥ 3, the center Z(Sn) of the symmetric group Sn is {ι}.

Proof. On the contrary, we will assume that there exists a nontrivial permutation σ of Z(Sn).

Consequently, there exist distinct integers i and j such that σ(i) = j. By hypothesis that n ≥ 3,

there exists another integer k distinct from i and j. Consider the transposition τ = (i, k). We have

that στ(i) = σ(k) 6= j = τ(j) = τσ(i). For if it were the case that σ(k) = j, then we would have

that σ(k) = σ(i) so that k = i by hypothesis that σ is a bijection — a contradiction. But then, σ

does not commute with τ, contradicting our assumption that σ is in Z(Sn).

Q1c, August 2015. Given a group G, denote the center of G by

Z(G) = {x ∈ G |xg = gx for all g ∈ G}.

Observe that Z(G) is a normal subgroup of G. Construct subgroups Zi(G) inductively as follows.

1.) Begin with Z0(G) = {eG}.

2.) For each integer i ≥ 0, let Zi+1(G) be the subgroup of G that is the pre-image of the center

of the group G/Zi(G) so that Zi+1(G)/Zi(G) is the center of G/Zi(G).

We note that G is nilpotent if Zn(G) = G for some integer n ≥ 1. Give an example of a group G

with a normal subgroup H such that both H and G/H are nilpotent but G is not nilpotent.

Given a permutation σ in Sn with cycle decomposition σ1 · · ·σk such that σi has length ri, we may

rearrange (if necessary) the σi so that r1 ≤ · · · ≤ rk. We refer to the ordered k-tuple (r1, . . . , rk)

as the cycle type of σ. Considering that an ordered k-tuple (r1, . . . , rk) with r1 ≤ · · · ≤ rk and

r1 + · · ·+ rk = n is an integer partition of n with k parts by definition, we have the following.

Proposition 7. Given a positive integer n, the number of distinct cycle types of permutations in

Sn is equal to the number of distinct integer partitions of n.

Our next proposition states that cycle type is unique up to conjugation.

Proposition 8. Given two permutations ρ and σ in Sn, there exists a permutation τ in Sn such

that τρτ−1 = σ (i.e., ρ and σ are conjugate in Sn) if and only if ρ and σ have the same cycle type.

Before we prove the proposition, we need the following lemma (that appeared on a past qual).

Q1a, August 2017. Consider the k-cycle σ = (a1, . . . , ak). Prove that for any permutation τ in

Sn with n ≥ k, we have that τστ−1 = (τ(a1), . . . , τ(ak)).

Proof. Given any integer 1 ≤ i ≤ n, we will assume that σ(i) = j. By hypothesis that τ is a

permutation, it follows that τ−1 exists and satisfies τ−1(τ(i)) = i so that στ−1(τ(i)) = σ(i) = j.

Consequently, we have that τστ−1(τ(i)) = τ(j) so that τστ−1 sends τ(i) to τ(j).

Given that σ is the k-cycle σ = (a1, . . . , ak), it follows that σ fixes all integers in [n]−{a1, . . . , ak},
hence τστ−1 fixes all integers in [n]−{τ(a1), . . . , τ(ak)}. Likewise, we have that σ(ai) = ai+1 for all

integers 1 ≤ i ≤ k−1 and σ(ak) = a1, hence τστ−1 maps τ(ai) to τ(ai+1) for all integers 1 ≤ i ≤ k−1

and τστ−1 maps τ(ak) to τ(a1). Put another way, we have that τστ−1 = (τ(a1), . . . , τ(ak)).
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Proof. (Proposition 8) Given that ρ and σ are conjugate in Sn, there exists a permutation τ in Sn

such that τρτ−1 = σ. We may assume that ρ = ρ1 · · · ρk is the cycle decomposition of ρ so that

σ = τρτ−1 = (τρ1τ
−1) · · · (τρkτ−1)

is the cycle decomposition of σ. By the above lemma, it follows that τρiτ
−1 are cycles of the same

length as ρi, hence we must have that ρ and σ have the same cycle type.

Conversely, we will assume that ρ and σ have the same cycle type (r1, . . . , rk). Consequently,

we have that ρ = ρ1 · · · ρk and σ = σ1 · · ·σk for some disjoint cycles ρi and some disjoint cycles σi
with length(ρi) = ri = length(σi). Considering that [n] is a finite set, we may construct a bijection

τ : [n]→ [n] that maps the cycle ρi to the cycle σi. Even more, we may construct τ in such a way

that for any cycle ρi = (ai,1, . . . , ai,ri) and the corresponding cycle σi = (bi,1, . . . , bi,ri), we have that

τ(ai,j) = bi,j. We claim that τρτ−1 = σ. By the above lemma, we have that

τρτ−1(τ(ai,j)) = τρ(ai,j) = τ(ai+1,j) = bi+1,j = σ(bi,j) = σ(τ(ai,j)).

By construction, we have that τ is a bijection from [n] to itself, hence every element of [n] can be

written as τ(ai,j) for some integer 1 ≤ ai,j ≤ n. We conclude therefore that τρτ−1 = σ.

Example 4. Give an explicit bijection τ : [3]→ [3] that conjugates ρ = (1, 2, 3) and σ = (1, 3, 2).

Solution. By the proof of Proposition 8, we must have that τ(1) = 1, τ(2) = 3, and τ(3) = 2 so that

τ = (1)(2, 3). Let us verify that τρτ−1 = σ. Considering that ττ = (1)(2, 3)(1)(2, 3) = (1)(2)(3) = ι,

it follows that τ = τ−1 so that τρτ−1 = (1)(2, 3)(1, 2, 3)(1)(2, 3) = (1, 3, 2) = σ, as desired. �

Example 5. Give an explicit bijection τ : [8] → [8] that conjugates ρ = (1, 3, 5)(2, 7)(4, 8)(6) and

σ = (1)(2, 5, 8)(3, 4)(6, 7).

Solution. Certainly, we could proceed in the manner outlined in the proof of Proposition 8; however,

this answer from Arturo Magidin gives a beautiful way to construct τ more easily. First, we write

down the cycle type of ρ and σ; then, we arrange the cycles of ρ and σ in some (not necessarily

unique) manner so that the cycles have non-decreasing length; and last, we construct a 2× 8 array

with ρ in the first line and σ in the second line. Observe that the cycle type of ρ and σ is (1, 2, 2, 3),

hence we may arrange ρ = (6)(2, 7)(4, 8)(1, 3, 5) and σ = (1)(3, 4)(6, 7)(2, 5, 8) to obtain τ.

τ =

(
6 2 7 4 8 1 3 5

1 3 4 6 7 2 5 8

)
By reading off the array, we find that τ = (1, 2, 3, 5, 8, 7, 4, 6). Observe that τρτ−1 = σ if and only

if τρ = στ. We leave it to the reader to verify that τρ = στ, as desired. �

Computing the inverse of a permutation can be quite tedious; however, if we have a permutation

σ written as its cycle decomposition σ = σ1 · · ·σk, then Proposition 2 above gives a way to write

down the inverse of σ. Explicitly, if σi has length ri, then σiσ
ri−1
i = σrii = ι = σri−1i σi. Consequently,

we have that σ−1i = σri−1i . Considering that disjoint cycles commute, we have the following.
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Proposition 9. Given a permutation σ with cycle decomposition σ = σ1 · · ·σk and cycle type

(r1, . . . , rk), we have that σ−1 = σr1−11 · · ·σrk−1k .

Ultimately, Proposition 9 reduces the matter of finding inverses of permutations written in cycle

decomposition bearable, as finding the inverse of a cycle is quite easy: observe that for the k-cycle

(a1, . . . , ak), by the proof of Proposition 2, we have that (a1, . . . , ak)
k−1 = (a1, ak, ak−1, . . . , a3, a2).

We turn our attention now to the matter of the combinatorics (or mathematics of counting) in

the symmetric group. Our first result follows immediately from Propositions 7 and 8.

Proposition 10. Given a positive integer n, the number of distinct conjugacy classes of Sn is equal

to the number of distinct integer partitions of n.

Proof. By Proposition 8 above, there exists a bijection

{distinct conjugacy classes of Sn} ↔ {distinct cycle types of permutations in Sn}

that sends the conjugacy class of some permutation ρ with cycle type (r1, . . . , rk) to the cycle type

(r1, . . . , rk). Explicitly, the permutations ρ and σ are conjugate (and hence in the same conjugacy

class) if and only if they have the same cycle type, hence this map is injective. Further, this map is

surjective because for any cycle type (r1, . . . , rk), we can construct a permutation ρ with cycle type

(r1, . . . , rk), and by Proposition 8, conjugation preserves cycle type. Consequently, we have that

#{distinct conjugacy classes of Sn} = #{distinct cycle types of permutations in Sn}.

By Proposition 7 above, the latter is equal to the number of distinct integer partitions of n.

Q1b, August 2017. Compute the number of distinct conjugacy classes in S5.

Often, the best way to count something is to establish a bijection between what we want to count

and something for which we already know the cardinality; however, counting can sometimes be

successfully accomplished by näıvely underestimating and multiplying by the number of times each

element in the set was undercounted. We illustrate this principle in the following proposition.

Proposition 11. Given a positive integer n, the number of distinct k-cycles in Sn is n!
k(n−k)! .

Proof. Every k-cycle in Sn is constructed in the following manner.

1.) Choose k elements from among the n elements of [n]. We can do this in
(
n
k

)
= n!

k!(n−k)! ways.

2.) Order the k elements in some way. Bear in mind that there is no “first” term in the ordering

because (a1, . . . , ak) is the same as (ak, a1, . . . , ak−1), etc. Consequently, the order only matters

for k − 1 of the elements, hence there are (k − 1)! ways to order the k elements.

By the Fundamental Counting Principle, there are n!
k!(n−k)! · (k − 1)! = n!

k(n−k)! k-cycles in Sn.
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The Alternating Group on n Letters

Until now, we have only briefly mentioned the notion of a transposition, i.e., a cycle of length 2.

By Proposition 2, the order of any transposition τ is 2; by Proposition 4, the order of any product

of disjoint transpositions is also 2, hence a product of disjoint transpositions is an involution. Our

next proposition gives some motivation to further understand transpositions.

Proposition 12. Every permutation can be written as the product of a unique number of (not

necessarily disjoint) transpositions.

Proof. Considering that every permutation can be written as the product of disjoint cycles, it suf-

fices to show that any cycle (a1, . . . , ak) can be written as a product of (not necessarily disjoint)

transpositions. But this is quite simple: we have that (a1, . . . , ak) = (a1, ak)(a1, ak−1) · · · (a1, a2).
By Proposition 8, we have that cycle type is unique up to conjugation, hence the number of trans-

positions is uniquely determined by the cycle type of a permutation.

Considering that every permutation σ in Sn can be written as the product of a unique number of

(not necessarily disjoint) transpositions, we can define the parity of a permutation to be the parity

(even or odd) of the number t(σ) of transpositions in the transposition decomposition of σ. Further,

we refer to the number sgn(σ) = (−1)t(σ) as the sign of the permutation σ. Observe that σ is even

if and only if sgn(σ) = 1, and likewise, σ is odd if and only if sgn(σ) = −1.

Proposition 13. Consider the map sgn : Sn → {−1, 1} defined by sgn(σ) = (−1)t(σ). We have

that ker(sgn) is a normal subgroup of Sn of index 2. Consequently, we have that |ker(sgn)| = n!/2.

Proof. Observe that {−1, 1} is a multiplicative group with identity 1. Consequently, we have that

sgn(ρσ) = (−1)t(ρσ) = (−1)t(ρ)+t(σ) = (−1)t(ρ)(−1)t(σ) = sgn(ρ) sgn(σ)

so that sgn is a group homomorphism. We leave it as an exercise for the reader to prove the more

general fact that the kernel of any group homomorphism from G is a normal subgroup of G (and

conversely, a normal subgroup N of G is precisely the kernel of the group homomorphism π : G→
G/N), from which it follows that ker(sgn) is a normal subgroup of Sn. By Lagrange’s Theorem, we

have that [G : ker(sgn)] = |G|/|ker(sgn)| = |G/ ker(sgn)|. Using the First Isomorphism Theorem,

we conclude that G/ ker(sgn) ∼= {−1, 1} so that |G/ ker(sgn)| = |{−1, 1}| = 2. Considering that the

last sentence of the claim is a restatement of the second sentence, our proof is complete.

We define the alternating group An on n letters to be the normal subgroup ker(sgn) of Sn

from Proposition 10. Observe that σ is in ker(sgn) if and only if sgn(σ) = 1 if and only if σ is

even, hence the alternating group on n letters is precisely the subgroup of Sn consisting of even

permutations. Of course, this matches with our intuition: the identity map ι : [n] → [n] is the

identity element of Sn; it can be represented as a the product of 1-cycles ι = (1)(2) · · · (n) with 0

transpositions, hence we have that sgn(ι) = (−1)t(ι) = (−1)0 = 1 so that ι is even. Given any two

even permutations ρ and σ, we have that sgn(σ−1) = sgn(σ) because σ−1 has the same cycle type as

σ and hence the same number of transpositions. By the one-step subgroup test, we conclude that

sgn(ρσ−1) = (−1)t(ρσ
−1) = (−1)t(ρ)+t(σ

−1) = (−1)t(ρ)+t(σ) = (−1)2r+2s = 1 so that ρσ−1 is even.
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Proposition 14. Every permutation of odd order is even; however, the converse is not true —

namely, there exist even permutations with even order.

Proof. Given that σ is a permutation of odd order, it follows that lcm(r1, . . . , rk) is odd, where

(r1, . . . , rk) is the cycle type of σ. Consequently, we must have that ri is odd for each integer

1 ≤ i ≤ k. By the proof of Proposition 12, an ri-cycle is the product of ri − 1 transpositions, hence

σ is the product of (r1 − 1) + · · · + (rk − 1) transpositions. Each of the integers ri − 1 is even, so

this sum is even, and σ is a product of an even number of transpositions, i.e., σ is even.

Conversely, if σ is the product of an even number of disjoint transpositions, then σ is even by

definition, and the order of σ is 2 by Proposition 4 (or the discussion at the start of the section).

Other interesting tidbits for you to consider (and possibly prove for yourself) are as follows.

(a.) An is generated by all 3-cycles. (Try to prove this one by yourself first. Check the proof here.)

(b.) An is simple for n = 3 and n ≥ 5. (This is more involved. Check the proof here.)

(c.) A5 is the smallest non-abelian simple group; it is also the smallest non-solvable group.

(d.) A4 has the Klein 4-group Z2×Z2 as a proper normal subgroup via the injective group homo-

morphism ϕ : Z2 × Z2 → A4 defined by (0, 0) 7→ ι, (1, 0) 7→ (1, 2)(3, 4), (0, 1) 7→ (1, 3)(2, 4),

and (1, 1) 7→ (1, 4)(2, 3). (Check the details for yourself.) Consequently, A4 is not simple:

Z2 ×Z2
∼= ϕ(Z2 ×Z2) is a nontrivial normal subgroup of A4. Further, the sequence of groups

0→ Z2 × Z2
ϕ−→ A4

π−→ A4

ϕ(Z2 × Z2)
→ 0

is exact. Later, this will make more sense, but for now, suffice it to say that this implies that

quartic polynomials can be solved by radicals (i.e., there exists a quartic formula). We will

eventually see that the non-solvability of A5 implies that there is no quintic formula, and even

more, polynomials of degree ≥ 5 are not solvable by radicals (hence the name “solvable”).

Cayley’s Theorem

Cayley’s Theorem is an example of a simple observation with larger implications.

Theorem 1. (Cayley’s Theorem) Every group is isomorphic to a group of permutations.

Proof. Given a group G and any element g of G, consider the map ϕg : G → G defined by

ϕg(x) = gx. By hypothesis that g is a group, it follows that g−1 is an element of G so that

ϕg ◦ ϕg−1(x) = ϕg(g
−1x) = gg−1x = x = g−1gx = ϕg−1(gx) = ϕg−1 ◦ ϕg(x)

for every element x of G. Consequently, it follows that ϕg−1 is the inverse function of ϕg so that

ϕg is a bijection from G to itself. By definition, therefore, ϕg is a permutation of G and hence an

element of the symmetric group SG on the set G. We claim that the map σ : G → SG defined by

σ(g) = ϕg is a group homomorphism. Observe that for any element k of G, we have that

σ(gh)(k) = ϕgh(k) = ghk = ϕg(hk) = ϕg ◦ ϕh(k).
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Considering that k is arbitrary, it follows that σ(gh) = ϕg ◦ ϕh = σ(g)σ(h) as functions, where

concatenation is meant as function composition on SG. Consequently, σ is a group homomorphism.

Further, we have that g is in kerσ if and only if ϕg = idSG
if and only if ϕg(x) = idSG

(x) for all

elements x of G if and only if gx = x for all elements x of G if and only if g = eG by cancellation in

G. We conclude that σ is injective, hence G ∼= σ(G) ≤ SG by the First Isomorhpism Theorem.

Corollary 1. Every finite group of order n is isomorphic to a subgroup of Sn.

Proof. By Cayley’s Theorem, every finite group G of order n is isomorphic to a subgroup of SG.

But as we suggested in the first section above, we have that SG
∼= Sn. Indeed, there exists a

bijection f : G → [n] because they are finite sets of the same cardinality. We can extend f to a

group isomorphism ϕ : SG → Sn by declaring that for any permutation σ in SG, we have that

ϕ(σ) is the permutation in Sn that maps f(g) to f(h) whenever σ(g) = h. By taking inspiration

from the proof of Proposition 7, we define ϕ : SG → Sn by ϕ(σ) = f ◦ σ ◦ f−1, and we check that

(i.) ϕ(σ) is a permutation of [n] because it is a bijection from [n] to itself (follow the arrows);

(ii.) ϕ is a group homomorphism because ϕ(σ ◦ τ) = f ◦ (σ ◦ τ) ◦ f−1 = (f ◦ σ ◦ f−1) ◦ (f ◦ τ ◦ f−1)
shows that ϕ(σ ◦ τ) = ϕ(σ) ◦ ϕ(τ) by the associativity of function composition; and

(iii.) ϕ is a bijection with function inverse ψ : Sn → SG defined by ψ(ρ) = f−1 ◦ ρ ◦ f. Indeed,

observe that ψ ◦ ϕ(σ) = ψ(f ◦ σ ◦ f−1) = f−1 ◦ (f ◦ σ ◦ f−1) ◦ f = σ and conversely.

Certainly, we can use the same idea to prove that SX
∼= SY for any sets X and Y with |X| = |Y |.

Q2, January 2014 (Revisited). Consider a group G with a subgroup H such that [G : H] = n.

Prove that there exists a normal subgroup K of G such that K ⊆ H and [G : K] ≤ n!.

The Automorphism Group

Given a group G, we say that a group isomorphism from G to itself is an automorphism of G.

We denote by Aut(G) the set of automorphisms of G, i.e., we have that

Aut(G) = {ϕ : G→ G |ϕ is a group isomorphism}.

Proposition 15. Given a group G, we have that (Aut(G), ◦) is a group under function composition.

Proof. Observe that the identity map ι : G → G defined by ι(g) = g is an automorphism of G.

Consequently, Aut(G) is nonempty: ι is the identity element of Aut(G). Composition of functions

is associative, and compositions of bijective homomorphisms are bijective homomorphisms. Last,

every bijective group homomorphism has an inverse that is a bijective group homomorphism.

Given any element g ∈ G, observe that the map ϕg : G → G defined by ϕg(x) = gx is always a

bijection by the proof of Cayley’s Theorem; however, it is not typically a group homomorphism

because it is not true that gxy = ϕg(xy) 6= ϕg(x)ϕg(y) = gxgy for all elements x, y ∈ G. But with

a slight modification, we obtain an automorphism of G: gxyg−1 = (gxg−1)(gyg−1) for all elements

x, y ∈ G, hence the map χg(x) = gxg−1 is a group homomorphism. Cancellation in G shows that

χ is also a bijection (e.g., its inverse is χg−1), hence χ is an automorphism of G for every element g

of G. We refer to the set Inn(G) = {χg : G→ G | g ∈ G} as the inner automorphisms of G.
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Proposition 16. Given a group G, we have that (Inn(G), ◦) is a group under function composition.

Proof. Observe that the identity map ι : G→ G defined by ι(g) = g for every element g in G is an

inner automorphism of G. Consequently, Inn(G) is a nonempty subset of Aut(G). By the one-step

subgroup test, it suffices to show that if ϕ and ψ are in Inn(G), then ϕ ◦ ψ−1 is in Inn(G).

Proposition 17. Given a group G with center Z(G), we have that G/Z(G) ∼= Inn(G).

Proof. Use the First Isomorphism Theorem. We leave the details to the reader.

Proposition 18. Given a group G, prove that Inn(G) is cyclic if and only if Inn(G) = {ι}.

Proof. Of course, if Inn(G) = {ι}, then Inn(G) is (trivially) cyclic. Conversely, we will assume that

Inn(G) is cyclic, i.e., there exists an element g ∈ G such that Inn(G) = 〈χg〉. It is not difficult to

see that χng = χgn for every integer n. Given any element h of G, therefore, there exists an integer

n such that χh = χng , i.e., hxh−1 = χh(x) = χng (x) = χgn(x) = gnxg−n. Particularly, when x = g,

we have that hgh−1 = gngg−n = gn+1g−n = g so that hg = gh. But the same argument can be

made for all elements h of G, hence all elements of G commute with G. Ultimately, we conclude

that gxg−1 = xgg−1 = x for all elements x of G so that χg = ι and Inn(G) = {ι}.

Corollary 2. Given a group G with center Z(G), if G/Z(G) is cyclic, then G is abelian.

Proof. Given that G/Z(G) is cyclic, it follows that Inn(G) is cyclic so that Inn(G) = {ι}. Conse-

quently, χg is the identity map for every g ∈ G. We leave it to the reader to finish the proof.

Recall that the unique (up to isomorphism) cyclic group of order n is given by Zn = (Z/nZ,+).

Using a similar idea as in the proof of Corollary 1, if ϕ : G→ H is an isomorphism of groups, then

ψ : Aut(G)→ Aut(H) defined by ψ(γ) = ϕ ◦ γ ◦ ϕ−1 is an isomorphism. Consequently, in order to

study the automorphism group of a cyclic group of order n, it suffices to study the automorphism

group Aut(Zn). For this, we need to recall some elementary number theory. By Bézout’s Identity,

we have that k+nZ is a unit in Zn if and only if gcd(k, n) = 1. Further, every group homomorphism

ψ : Zn → Zn is uniquely determined by ψ(1 + nZ) because we must have that

ψ(m+ nZ) = ψ((1 + nZ) + · · ·+ (1 + nZ)︸ ︷︷ ︸
m summands

)

= ψ(1 + nZ) + · · ·+ ψ(1 + nZ)︸ ︷︷ ︸
m summands

+nZ

= mψ(1 + nZ) + nZ.

Combined, these observations imply that ψ : Zn → Zn is an automorphism if and only if ψ(1 +nZ)

is a unit. Consequently, we have that |Aut(Zn)| = φ(n), where φ(n) is Euler’s totient function.

Corollary 3. Given a positive integer n, we have that Aut(Zn) ∼= Z×n , where Z×n denotes the

multiplicative group of units modulo n.

Corollary 4. (Euler’s Theorem) Given an integer a with gcd(a, n) = 1, we have aφ(n) ≡ 1 (mod n).

Corollary 5. (Fermat’s Little Theorem) Given an integer a and a prime integer p with gcd(a, p) = 1,

we have that ap ≡ a (mod p).
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Semidirect Products

Earlier in the semester, we studied the direct product H ×K of two groups H and K. We found

that H×K is a group whose operation is given by (h1, k1)(h2, k2) = (h1h2, k1k2). Given that H and

K are both normal subgroups of a larger group G such that H ∩K = {eG} and G = HK, we found

that G ∼= H ×K. Unfortunately, if only one of H or K were normal, we could only say that HK

is a subgroup of G (cf. Q1, August 2013). Even worse, if neither H nor K is normal in G, then we

could not say anything at all. But this brings to mind a natural question: does there exist a group

G′ such that H E G′, K ≤ G′ (but K is not necessarily normal in G′), and H ∩K = {eG′}?
Before we answer this question in the affirmative, let us thoroughly examine what we already

know. Given a group G such that H E G and K ≤ G, we have that HK is a subgroup of G,

hence for any two elements h1k1, h2k2 ∈ HK, we have that (h1k1)(h2k2) is in HK. We may write

the element h1k1h2k2 in the form h3k3 for some elements h3 ∈ H and k3 ∈ K by observing that

h1k1h2k2 = h1k1h2k
−1
1 k1k2 = h1(k1h2k

−1
1 )(k1k2)

and using the fact that H is normal in G, hence ghg−1 is in H for all h ∈ H and g ∈ G. Particularly,

we have that k1h2k
−1
1 is in H so that h3 = h1(k1h2k

−1
1 ) and k3 = k1k2.

Using this observation as our motivation, we set out to define the group G′ hinted at in the

beginning of this section. By the previous section, the map χk1 : H → H defined by χk1(h) = k1hk
−1
1

gives a map from K to Aut(H), so we may write the above displayed equation as

(h1k1)(h2k2) = (h1χk1(h2))(k1k2).

Observe that this defines a multiplication in HK intrinsically in terms of H and K.

Proposition 19. Given any groups H and K with a group homomorphism ϕ : K → Aut(H), we

define the semidirect product of H and K to be the set of ordered pairs in H × K endowed

with the multiplication outlined in the above displayed equation. Put another way, we define the

semidirect product of H and K to be the following set endowed with the prescribed multiplication.

H oϕ K
def
= {(h, k) |h ∈ H, k ∈ K, and (h1, k1)(h2, k2)

def
= (h1ϕ(k1)(h2), k1k2)}

(i.) We have that H oϕ K is a group of order |H||K|.

(ii.) We have that Hϕ = {(h, eK) |h ∈ H} and Kϕ = {(eH , k) | k ∈ K} are both subgroups of

H oϕ K such that H ∼= Hϕ and K ∼= Kϕ.

(iii.) We have that Hϕ is a normal subgroup of H oϕ K such that Hϕ ∩Kϕ = {eHoϕK}.

(iv.) For all ordered pairs ((h, eK), (eH , k)) ∈ Hϕ×Kϕ, we have that κ(k)η(h)κ(k)−1 = η(ϕ(k)(h)).

Proof. (i.) Clearly, we have that |HoϕK| = |H×K| = |H||K|. Considering that ϕ(K) is a subgroup

of the automorphism group of H, it follows that ϕ(k)(h) is an element of H for all elements k of

K. Consequently, we have that h1ϕ(k1)(h2) is an element of H by hypothesis that H is a group.

Likewise, we have that k1k2 is an element of K by hypothesis that K is a group. We conclude
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therefore that H oϕ K is closed under the multiplication defined above. Observe that the identity

element of H oϕ K is given by the ordered pair (eH , eK): indeed, we have that

(eH , eK)(h, k) = (eHϕ(eK)(h), eKk) = (h, k) and

(h, k)(eH , eK) = (hϕ(k)(eH), keK) = (heH , k) = (h, k)

because any automorphism of H must send eH to itself. Given any element (h, k) of H oϕ K, its

two-sided inverse is given by (ϕ(k)−1(h−1), k−1). Explicitly, we have that

(h, k)(ϕ(k)−1(h−1), k−1) = (hϕ(k) ◦ ϕ(k)−1(h−1)), kk−1) = (hh−1, eK) = (eH , eK) and

(ϕ(k)−1(h−1), k−1)(h, k) = (ϕ(k)−1(h−1)ϕ(k−1)(h), k−1k)

= (ϕ(k)−1(h−1)ϕ(k)−1(h), eK)

= (ϕ(k)−1(h−1h), eK) = (ϕ(k)−1(eH), eK) = (eH , eK)

because ϕ is a group homomorphism, hence ϕ(k−1) = ϕ(k)−1 for all elements k of K. Proving that

this multiplication is associative is just a (tedious) matter of out the details.

(ii.) Considering that Hϕ and Kϕ both contain the identity (eH , eK) of H oϕ K, they are

nonempty. Given any two elements (h1, eK) and (h2, eK) of Hϕ, observe that

(h1, eK)(h2, eK)−1 = (h1, eK)(ϕ(eK)−1(h−12 ), e−1K ) = (h1, eK)(h−12 , eK),

hence (h1, eK)(h2, eK)−1 is in Hϕ, as its second component is eK . By the one-step subgroup test,

Hϕ is a subgroup of H oϕ K. Given any two elements (eH , k1) and (eH , k2) of Kϕ, we have that

(eH , k1)(eH , k2)
−1 = (eH , k1)(ϕ(k1)

−1(e−1H ), k−12 ) = (eH , k1)(eH , k
−1
2 ),

hence (eH , k1)(eH , k2)
−1 is in Kϕ, as its first component is eH . Once again appealing to the one-

step subgroup test, we conclude that Kϕ is a subgroup of H oϕ K. Consider the surjective map

η : H → Hϕ defined by η(h) = (h, eK). Given any elements h1, h2 of H, we have that

η(h1h2) = (h1h2, eK) = (h1ϕ(eK)(h2), eKeK) = (h1, eK)(h2, eK) = η(h1)η(h2),

hence η is a group homomorphism. Considering that ker η = {eH}, it follows that η is injective. By

the First Isomorphism Theorem, we conclude that H ∼= Hϕ. By an analogous argument applied to

the surjective map κ : K → Kϕ defined by κ(k) = (eH , k), we conclude that K ∼= Kϕ.

(iii.) Given any element (h1, k1) of H oϕ K and any element (h, eK) of Hϕ, we have that

(h1, k1)(h, eK)(h1, k1)
−1 = (h1ϕ(k1)(h), k1eK)(ϕ(k1)

−1(h−11 ), k−11 )

= (h1ϕ(k1)(h)ϕ(k1eK)(ϕ(k1)
−1(h−11 )), k1eKk

−1
1 )

= (h1ϕ(k1)(h)ϕ(k1)(ϕ(k−11 )(h−11 )), eK)
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is an element of Hϕ, from which it follows that Hϕ E H oϕK. Observe that (h, k) is in Hϕ ∩Kϕ if

and only if h = eH and k = eK , hence we conclude that Hϕ ∩Kϕ = {(eH , eK)} = {eHoϕK}.
(iv.) Given any ordered pair (h, k) ∈ H ×K, we have that

(eH , k)(h, eK)(eH , k)−1 = (eHϕ(k)(h), keK)(ϕ(k)−1(e−1H ), k−1)

= (eHϕ(k)(h)ϕ(k)(ϕ(k−1)(e−1H )), eK) = (ϕ(k)(h), eK),

from which it follows that κ(k)η(h)κ(k)−1 = η(ϕ(k)(h)), as desired.

Our next proposition illustrates to what extent a semidirect product is not a direct product.

Proposition 20. Given any groups H and K with a group homomorphism ϕ : K → Aut(H), the

following properties are equivalent.

(a.) The set-theoretic identity map ι : H oϕ K → H ×K is a group isomorphism.

(b.) The group homomorphism ϕ : K → Aut(H) is trivial, i.e., we have that ϕ(k)(h) = h for all

elements k in K and h in H, i.e., ϕ(k) is the identity automorphism for all elements k in K.

(c.) Kϕ is normal in H oϕ K.

Proof. Given that ι : H oϕ K → H × K defined by ι(h, k) = (h, k) is a group isomorphism, it

follows that for all ordered pairs (h1, k1) and (h2, k2) of H ×K, we have that

(h1h2, k1k2) = (h1, k1)(h2, k2)︸ ︷︷ ︸
group structure of H×K

= ι((h1, k1)(h2, k2)) = ι(h1ϕ(k1)(h2), k1k2)︸ ︷︷ ︸
group structure of HoϕK

= (h1ϕ(k1)(h2), k1k2).

Comparing the left- and right-hands sides and using the cancellative property of H, we find that

h2 = ϕ(k1)(h2) for all elements h2 of H and all elements k1 of K, as desired.

Given that ϕ is trivial, for any elements (h1, k1) of H oϕ K and (eH , k) of Kϕ, we have that

(h1, k1)(eH , k)(h1, k1)
−1 = (h1ϕ(k1)(eH), k1k)(ϕ(k1)

−1(h−11 ), k−11 )

= (h1, k1k)(h−11 , k−11 )

= (h1ϕ(k1k)(h−11 ), k1kk
−1
1 ) = (h1h

−1
1 , k1kk

−1
1 ) = (eH , k1kk

−1
1 ).

Considering that k1kk
−1
1 is in K, it follows that Kϕ is a normal subgroup of H oϕ K.

Given that Kϕ is normal in HoϕK, it follows that for all elements h1 in H and for any k and k1
in K, there exists an element k2 in K such that (h1, k1)(eH , k)(h1, k1)

−1 = (eH , k2). Consequently,

we have that (h1, k1)(eH , k) = (eH , k2)(h1, k1) as elements of H oϕ K so that

(h1, kk1) = (h1ϕ(k1)(eH), kk1) = (h1, k1)(eH , k) = (eH , k2)(h1, k1) = (ϕ(k2)(h1), k2k1).

Considering these as elements of the group H × K, we have that ϕ(k2)(h1) = h1 and k = k2 by

the cancellative property of K. Considering that h1 and k are arbitrary, it follows that ϕ(k) is the

identity automorphism on for all elements k in K. But this implies that

ι((h1, k1)(h2, k2)) = ι(h1ϕ(k1)(h2), k1k2) = ι(h1h2, k1k2) = (h1h2, k1k2) = (h1, k1)(h2, k2)

for any ordered pairs (h1, k1), (h2, k2) ∈ H ×K, hence ι is a group isomorphism.
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Example 6. Consider the semidirect product of H = Z3 and K = Z4 with respect to the group

homomorphism ϕ : Z4 → Aut(Z3) defined by ϕ(n+ 4Z) = νn, where νn : Z3 → Z3 is the inversion

automorphism defined by ν(k + 3Z) = (−1)nk + 3Z. Prove that Z3 oϕ Z4 has a cyclic Sylow 2-

subgroup; then, deduce that Z3 oϕ Z4 is not isomorphic to the alternating group A4 on four letters

or the dihedral group D12 (i.e., the group of symmetries of the hexagon).

Solution. By Proposition 19, we have that |Z3oϕZ4| = |Z3||Z4| = 3 · 4 = 22 · 3, and (Z4)ϕ ∼= Z4 is a

cyclic subgroup of order 4, i.e., a cyclic Sylow 2-subgroup of order 4. Considering that A4 does not

have any elements of order 4, it follows that A4 does not have a cyclic subgroup of order 4 so that

Z3oϕZ4 is not isomorphic to A4. On the other hand, we claim that D12 has at least three elements

of order 2 and that Z3 oϕ Z4 has only one element of order 2.

Observe that the elements of D12 are of the form risj for some integers 0 ≤ i ≤ 5 and 0 ≤ j ≤ 1

with srs = r−1. Evidently, we have that s, r3, and rs are all elements of order 2. Each element of

Z3oϕZ4 is of the form (a+3Z, b+4Z) and satisfies (a+3Z, b+4Z)(a+3Z, b+4Z) = (a+(−1)ba+

3Z, 2b + 4Z), hence an element of Z3 oϕ Z4 has order 2 if and only if 3 | (a + (−1)ba) and 4 | 2b.
Considering that 4 | 2b if and only if 2 | b, it follows that b+ 4Z = 0 + 4Z or b+ 4Z = 2 + 4Z. Either

way, we have that a + (−1)ba = 2a, from which it follows that 3 | 2a if and only if 3 | a if and only

if a+ 3Z = 0 + 3Z. Consequently, the only element of order 2 in Z3 oϕ Z4 is (0 + 3Z, 2 + 4Z). �

Example 7. Given a group H, we define the holomorph of H to be the semidirect product of

H oι Aut(H) with respect to the identity homomorphism ι : Aut(H)→ Aut(H), i.e., we have that

Hol(H) = H oι Aut(H). Given that H = Z2 × Z2, prove that Aut(H) ∼= S3 and Hol(H) ∼= S4.

Proposition 21. Consider the semidirect product of H and K with respect to the group homo-

morphism ϕ : K → Aut(H). We have the set-theoretic fact that

[Z(H) ∩ Fix(ϕ(K))]× [Z(K) ∩ kerϕ] ⊆ Z(H oϕ K),

where Fix(ϕ(K)) is the set of elements in H that are fixed by all automorphisms of ϕ(K).

Proof. Given any elements h in Z(H) ∩ Fix(ϕ(K)) and k in Z(K) ∩ kerϕ, we have that

(h, k)(h1, k1) = (hϕ(k)(h1), kk1) = (hh1, kk1) = (h1h, k1k) = (h1ϕ(k1)(h), k1k) = (h1, k1)(h, k)

for any (h1, k1) in H oϕ K. Explicitly, we have that ϕ(k)(h1) = h1 because k is in kerϕ, i.e., ϕ(k)

is the identity automorphism on H; hh1 = h1h and kk1 = k1k because h and k are in the center of

H and K; and h = ϕ(k1)(h) because h is in Fix(ϕ(K)), i.e., h is fixed by all automorphisms.

Q1c., January 2017. Consider a prime integer p. Give an example of a non-abelian group of order

pn whose center contains more than one normal subgroup of order p.
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